The cave microbiota is assumed to be shaped by indoor microclimate, biotic and abiotic factors, which are largely dependent from outside environmental conditions; however, this knowledge is available at local or regional scales only. To address this knowledge gap, we reanalyzed over 1050 bacterial and fungal communities of caves worldwide, and found that outdoor temperature and rainfall play a critical role in explaining differences in microbial diversity patterns of global caves, selecting specific dominant taxa across gradients of growing aridity conditions with arid climate leading to a reduction in total cave microbial diversity.
Moreover, we found that fungal (from 186 to 1908 taxa) and bacterial (from 467 to 1619 taxa) diversity increased under temperate-tropical and temperate-continental climatic regions, respectively, highlighting an opposite preference for the two microbial compartments. We hypothesized that outdoor geographical, climatic variables and lithology are critical epistatic drivers in assembling microbial communities and their dominant taxa, whose ecological responses could be useful to predict the fate of these subterranean environments in the context of climate change. Our work elucidates the intimate connection between caves microbiota and surface ecosystems highlighting the sensitivity of cave microbial communities to climatic changes and environmental degradation. This work also provides a natural benchmark for the biogeographic information for caves globally and for protection strategies aiming at conservation of underground environments.