Aim The biophysical impacts of invasive Australian acacias and their effects on ecosystem services are explored and used to develop a framework for improved restoration practices.
Location South Africa, Portugal and Chile.
Methods A conceptual model of ecosystem responses to the increasing severity (density and duration) of invasions was developed from the literature and our knowledge of how these impacts affect options for restoration. Case studies are used to identify similarities and differences between three regions severely affected by invasions of Australian acacias: Acacia dealbata in Chile, Acacia longifolia in Portugal and Acacia saligna in South Africa.
Results Australian acacias have a wide range of impacts on ecosystems that increase with time and disturbance, transform ecosystems and alter and reduce ecosystem service delivery. A shared trait is the accumulation of massive seed banks, which enables them to become dominant after disturbances. Ecosystem trajectories and recovery potential suggest that there are important thresholds in ecosystem state and resilience. When these are crossed, options for restoration are radically altered; in many cases, autogenic (self-driven and self-sustaining) recovery to a pre-invasion condition is inhibited, necessitating active intervention to restore composition and function.