As demand for renewable energy grows, so does the need for an improved understanding of renewable energy sources. Paradoxically, the climate change mitigation strategy of fossil fuel divestment is in itself subject to shifts in weather patterns resulting from climate change. This is particularly true with solar power, which depends on local cloud cover. However, because observed shortwave radiation data usually span a decade or less, persistent long-term trends may not be identified. A simple linear regression model is created here using diurnal temperature range (DTR) during 2002–15 as a predictor variable to estimate long-term shortwave radiation (SR) values in the northeastern United States. Using an extended DTR dataset, SR values are computed for 1956–2015. Statistically significant decreases in shortwave radiation are identified that are dominated by changes during the summer months. Because this coincides with the season of greatest insolation and the highest potential for energy production, financial implications may be large for the solar energy industry if such trends persist into the future.
Examining the climatology of shortwave radiation in the Northeastern United States
Year: 2017