Due to changing environmental conditions, many species will have to migrate or occupy new suitable areas to avoid potential extinction in the current biodiversity crisis. Long-lived animals are especially vulnerable and ex-situ conservation actions can provide solutions through assisted colonisations. However, there is little empirical evidence on the process of founding new populations for such species or the feasibility of assisted colonisations as a viable conservation measure. Here, we combined genetics with reproductive data to study the rise of two wild populations of green turtles (Chelonia mydas) in the Cayman Islands as a possible outcome of a reintroduction program started 50 years ago. We show that both populations are highly related to the captive population but rapidly diverged due to genetic drift. Individuals from the reintroduced populations showed high levels of nest fidelity, within and across nesting seasons, indicating that philopatry may help reinforce the success of new populations. Additionally, we show that reintroduction from captive populations has not undermined the reproductive fitness of first generation individuals. Sea turtle reintroduction programs can, therefore, establish new populations but require scientific evaluation of costs and benefits and should be monitored over time to ensure viability in the long-term.
The architecture of assisted colonisation in sea turtles: Building new populations in a biodiversity crisis
Year: 2022