The biodiversity and carbon dioxide absorption function of forests have received attention due to global warming. However, most of the world’s forests are general production forests. Since production forests are maintained by production activities, a decrease in production or abandonment of management leads to a decline in forest functions and increases the risk of disasters such as landslides. Against this background, the retention approach has been proposed as a way to convert general production forests into forests with enhanced environmental functions, but it has rarely been applied due to technical and cost barriers. This study focuses on cost barriers and examines the possibility of introducing a retention approach to converting production forests to environmental forests, using Japan as a case study. About 70% of Japan’s land area is covered with forests, 40% of which are production forests. However, due to the sharp decline in demand for timber in recent years and price competition with imported timber, the selling price of timber has fallen below the cost of managing production forests, and the management of many production forests has been abandoned. The dilemma is that the retention approach applied to the wood production process cannot be applied to forests where production activities are stagnant. Therefore, we explored the possibility of recovering the necessary costs with carbon credits that are available in the Japanese market. We calculated the cumulative carbon stocks of carbon dioxide in production forests by age, using intensity, and estimated how many years after planting the combined costs of normal production forests management and the retention approach would balance out. Our calculations show that even if carbon credits were sold at the lowest market price, the balance of payments would be balanced about 30 years after planting, resulting in a net profit from the sale of the wood.
Sustainable forest management evaluation using carbon credits: From production to environmental forests
Year: 2021